

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	pyramid_assetmutator 1.0b1 documentation 
 
      

    


    
      
          
            
  
pyramid_assetmutator


Overview

pyramid_assetmutator provides simple and flexible asset mutation (also known
as compiling or piping) for your Pyramid [http://www.pylonsproject.org/] applications.

Its goal is to provide Pyramid developers with a basic and straightforward
mechanism for utilizing asset compilation (e.g. for CoffeeScript/Sass),
minification (e.g. with jsmin), and optimization (e.g. with pngcrush).

As of version 0.3, it also adds experimental support for template language
parsing (e.g. you could use Pyramid helpers like request.route_url() within
your CoffeeScript files by using application.coffee.pt as the asset source
filename).


Warning

This package only supports Pyramid 1.3 or later.






Installation

To install, simply:

pip install pyramid_assetmutator






	You’ll need to have Python [http://www.python.org] 2.6+ and pip [http://www.pip-installer.org] installed.






Setup

Once pyramid_assetmutator is installed, you must include it in your Pyramid
project’s configuration. This is typically done using Pyramid’s
config.include [http://pyramid.readthedocs.org/en/latest/api/config.html#pyramid.config.Configurator.include] mechanism in your
project’s __init__.py:

config = Configurator(...)
config.include('pyramid_assetmutator')





Next, you must assign one or more mutators via the newly injected
assign_assetmutator() configuration method, so that
your application can know what kind of assets you’ll be asking it to mutate. The
configuration syntax for your Pyramid project’s __init__.py is:

config.assign_assetmutator('SOURCE EXTENSION', 'COMMAND', 'OUTPUT EXTENSION')





For example, the following configuration would activate pyramid_assetmutator
in your app, and initialize mutators for CoffeeScript and Less files (allowing
them to be compiled into the appropriate JavaScript and CSS):

config = Configurator(...)
config.include('pyramid_assetmutator')
config.assign_assetmutator('coffee', 'coffee -c -p', 'js')
config.assign_assetmutator('less', 'lessc', 'css')








Usage

Once you have included the module and configured your mutators, you will then be
able to call one of the following view helper methods in your templates to
reference (with Pyramid’s
asset specification [http://pyramid.readthedocs.org/en/stable/glossary.html#term-asset-specification]
syntax) and “mutate” (if needed) an asset:


	
class AssetMutator(request, rendering_val)

	
	
assetmutator_url(path, **kw)

	Returns a Pyramid static_url() [http://pyramid.readthedocs.org/en/latest/api/request.html#pyramid.request.Request.static_url] of the
mutated asset (and mutates the asset if needed).





	Parameters:	
	path (string - Required) – The Pyramid asset path to process.

	mutator (dict or string - Optional) – Allows you to override/specify a specific mutator to use
(e.g. coffee), or assign a brand new mutator
dictionary to be used (e.g. {'cmd': 'lessc', 'ext':
'css'})














	
assetmutator_path(path, **kw)

	Returns a Pyramid static_path() [http://pyramid.readthedocs.org/en/latest/api/request.html#pyramid.request.Request.static_path] of the
mutated asset (and mutates the asset if needed).





	Parameters:	
	path (string - Required) – The Pyramid asset path to process.

	mutator (dict or string - Optional) – Allows you to override/specify a specific mutator to use
(e.g. coffee), or assign a brand new mutator
dictionary to be used (e.g. {'cmd': 'lessc', 'ext':
'css'})














	
assetmutator_source(path, **kw)

	Returns the source data/contents of the mutated asset (and mutates the
asset if needed). This is useful when you want to output inline data
(e.g. for inline JavaScript blocks).





	Parameters:	
	path (string - Required) – The Pyramid asset path to process.

	mutator (dict or string - Optional) – Allows you to override/specify a specific mutator to use
(e.g. coffee), or assign a brand new mutator
dictionary to be used (e.g. {'cmd': 'lessc', 'ext':
'css'})










Note

Many template packages escape output by default. Consult your
template language’s syntax to output an unescaped string.








	
assetmutator_assetpath(path, **kw)

	Returns a Pyramid asset specification [http://pyramid.readthedocs.org/en/latest/glossary.html#term-asset-specification] such as
pkg:static/path/to/file.ext (and mutates the asset if needed).





	Parameters:	
	path (string - Required) – The Pyramid asset path to process.

	mutator (dict or string - Optional) – Allows you to override/specify a specific mutator to use
(e.g. coffee), or assign a brand new mutator
dictionary to be used (e.g. {'cmd': 'lessc', 'ext':
'css'})









This function could be used to nest pyramid_assetmutator calls. e.g.
assetmutator_path(assetmutator_assetpath('pkg:static/js/script.coffee'))
could compile a CoffeeScript file into JS, and then further minify the
JS file if your mutator configuration looked something like:

config.assign_assetmutator('coffee', 'coffee -c -p', 'js')
config.assign_assetmutator('js', 'uglifyjs', 'js')














Template Language Parsing

In version 0.3, experimental support for template language parsing was added. As
long as the template language is known to Pyramid (e.g. one of these bindings [https://pyramid.readthedocs.org/en/stable/narr/templates.html#available-add-on-template-system-bindings]
has been configured), you can append the expected template filename extension to
your asset filename and it will attempt to parse it before mutation.

For example, if the pyramid_jinja2 package was configured, you could specify
an asset path to an asset named application.coffee.jinja2 and
pyramid_assetmutator would run it through the Jinja2 renderer before
mutation.


Warning

Current support is experimental, and there are a few caveats:


	You must specify a mutated_path in your configuration so that the
intermediate-step sources can be stored and parsed from that directory.

	Template parsing is currently only supported when using the
each_request configuration (which is the default configuration).

	If Pyramid’s “reload_templates” setting is false, templates will _NOT_ be
reprocessed.

	Hopefully obvious, but if the asset you are parsing uses a syntax that
conflicts with the template language’s syntax, things probably won’t work
out very well for you.








Examples

An example using the Chameleon [http://chameleon.repoze.org/] template language (and assuming that a mutator
has been assigned for “coffee” files):

<script src="${assetmutator_url('pkg:static/js/test.coffee')}"
        type="text/javascript"></script>





And now the same example, but for inline code output:

<script type="text/javascript">
${structure: assetmutator_source('pkg:static/js/test.coffee')}
</script>





Or, if your default JS mutator configuration uses jsmin, but you wanted to
use uglifyjs for a particular asset:

<script src="${assetmutator_url('pkg:static/js/test.js', mutator={'cmd': 'uglifyjs', 'ext': 'js'})}"
        type="text/javascript"></script>





As of version 0.3, your asset source could be parsed with Chameleon as well:

<script src="${assetmutator_url('pkg:static/js/test.coffee.pt')}"
        type="text/javascript"></script>





Lastly, assetmutator_assetpath() is a particularly
nifty/dirty method which gives you the ability to chain mutators. For example,
if you wanted to mutate a CoffeeScript file into a JavaScript file and then
minify the JavaScript file, you could do something like:

<script src="${assetmutator_url(assetmutator_assetpath('pkg:static/js/test.coffee'))}"
        type="text/javascript"></script>










Mutators

You can assign as many mutators as you like using the
config.assign_assetmutator method, but it is important to keep in mind the
following:



	The mutator COMMAND must be installed, must be executable by the
Pyramid process, and by default must output the mutated data to stdout.
The last point can be tricky depending on the command, so be sure to check
its command switches for the appropriate option (or create a wrapper as
seen below).

	Mutators are executed in order (first in, first out), which means that it
is possible to compile a CoffeeScript file into a JavaScript file and then
minify the JavaScript file; but for certain configurations this may only
work if you have assigned the CoffeeScript compiler before the JavaScript
minifier.






Here are a few mutator commands that have been tested and are known to work as
of this writing:

# CoffeeScript - http://coffeescript.org/
config.assign_assetmutator('coffee', 'coffee -c -p', 'js')

# Dart - http://www.dartlang.org/
# Requires a wrapper - http://gist.github.com/98aa5e3f3d183d908caa
config.assign_assetmutator('dart', 'dart_wrapper', 'js')

# TypeScript - http://www.typescriptlang.org/
# Requires a wrapper - http://gist.github.com/eaace8a89881c8ca9cda
config.assign_assetmutator('ts', 'tsc_wrapper', 'js')

# Less - http://lesscss.org/
config.assign_assetmutator('less', 'lessc', 'css')

# Sass/SCSS - http://sass-lang.com/
config.assign_assetmutator('sass', 'sass', 'css')
config.assign_assetmutator('scss', 'sass --scss', 'css')

# jsmin - http://www.crockford.com/javascript/jsmin.html
config.assign_assetmutator('js', 'jsmin', 'js')

# UglifyJS - http://github.com/mishoo/UglifyJS
config.assign_assetmutator('js', 'uglifyjs', 'js')

# pngcrush - http://pmt.sourceforge.net/pngcrush/
# Requires a wrapper - http://gist.github.com/3a0c72ef9bb217315347
config.assign_assetmutator('png', 'pngcrush_wrapper', 'png')








Settings

While the default settings will probably be fine for most people, custom
settings can be configured via your Pyramid application’s .ini file (in the
app section representing your Pyramid app) using the assetmutator key:



	assetmutator.remutate_check

	



	Default:	stat


	Options:	exists | stat | checksum





Defines what type of method to use for checking if an asset source has
been updated (and should therefore be remutated). If set to exists
(fastest, but not always ideal), then it will only check to see if a
file matching the mutated version of the asset already exists. If set to
stat, then the size and last modified time will be checked. If set
to checksum (slowest, but most reliable), then the file contents
will also be checked.



	assetmutator.each_request

	



	Default:	true





Whether or not assets should be checked/mutated during each request
(whenever one of the assetmutator_* methods is encountered).



	assetmutator.each_boot

	



	Default:	[]





Defines a list of
asset specifications [http://pyramid.readthedocs.org/en/stable/glossary.html#term-asset-specification]
that should be checked/mutated when the application boots (uses
Pyramid’s ApplicationCreated [http://pyramid.readthedocs.org/en/latest/api/events.html#pyramid.events.ApplicationCreated] event).

Limited “globbing” support is available (via the glob [https://docs.python.org/3/library/glob.html#module-glob] module),
although checks are not recursive so you must be explicit.

e.g.:

assetmutator.each_boot =
    myapp:static/js/application.coffee
    myapp:static/css/*.sass
    myapp:static/css/admin/*.sass







	assetmutator.mutated_file_prefix

	



	Default:	_





A prefix to add to the mutated asset’s output filename.



	assetmutator.mutated_path

	



	Default:	None





By default, mutated output files are stored in the same directory as
their source files. If you would like to keep all mutated files in a
specific directory, you can define a Pyramid asset specification here
(e.g. pkg:static/cache/).


Note

The specified path must be a valid
asset specification [http://pyramid.readthedocs.org/en/stable/glossary.html#term-asset-specification]
that matches a configured static view [http://docs.pylonsproject.org/projects/pyramid/en/stable/narr/assets.html], and must be writable
by the application.





	assetmutator.purge_mutated_path

	



	Default:	false





When true, if a valid mutated_path is specified then any files
within it will be deleted when the application boots (uses Pyramid’s
ApplicationCreated [http://pyramid.readthedocs.org/en/latest/api/events.html#pyramid.events.ApplicationCreated] event).



	assetmutator.always_remutate

	



	Default:	[]





Defines a list of
asset specifications [http://pyramid.readthedocs.org/en/stable/glossary.html#term-asset-specification]
that should always be remutated — even if the mutated version of the
asset is already present.

Limited “globbing” support is available (via the fnmatch [https://docs.python.org/3/library/fnmatch.html#module-fnmatch] module),
so a value of *.sass would match all Sass sources, while a star
value (*) would specify that all sources should always be
remutated.

e.g.:

assetmutator.always_remutate =
    *.sass
    myapp:static/js/application.coffee






Note

Combining this with the each_request setting can be useful
in development environments when your source files contain
imports and therefore may not always change but should still
be remutated so that import changes are processed. However,
this can significantly affect performance so it should only be
utilized in environments that require it. Alternatively, you
may use a remutate_check value of stat (the default)
or checksum and manually “touch” a source file to trigger
a remutate on the next request.










Production Example

As an example, if you wanted to only check/mutate assets on each boot (a good
practice for production environments), processing CoffeeScript and Sass files in
the js and css root and admin directories, with each mutated
_filename stored in a myapp:static/cache/ directory, your .ini file
would look something like:

[app:main]
...other settings...
assetmutator.each_request = false
assetmutator.each_boot =
    myapp:static/js/*.coffee
    myapp:static/js/admin/*.coffee
    myapp:static/css/*.sass
    myapp:static/css/admin/*.sass
assetmutator.mutated_path = myapp:static/cache/








Asset Concatenation (a.k.a Asset Pipeline)

A feature that is popular in some web frameworks (e.g. Ruby on Rails) is the
ability to combine all assets that share a common type into a single file for
sourcing within your templates. However, this functionality is currently
beyond the scope of pyramid_assetmutator as we consider it to have less and
less relevance in an HTTP/2 era.




More Information



	pyramid_assetmutator API








Development Versions / Reporting Issues

Visit http://github.com/seedifferently/pyramid_assetmutator to download
development or tagged versions.

Visit http://github.com/seedifferently/pyramid_assetmutator/issues to report
issues.




Indices and tables


	Index

	Module Index

	Search Page









          

      

      

    


    
         Copyright 2017, Seth Davis <seth@curiasolutions.com>.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          previous |

        	pyramid_assetmutator 1.0b1 documentation 
 
      

    


    
      
          
            
  
pyramid_assetmutator API


	
assign_assetmutator(config, ext, cmd, new_ext)

	Configuration method to set up/assign an asset mutator. This allows the
various assetmutator_* view helper methods to know which mutator to run
for a specified asset path.





	Parameters:	
	ext (string - Required) – The file extension this mutator should match (e.g. coffee).

	cmd (string - Required) – The command to run (e.g. coffee -c -p). The filename to be
mutated will automatically be appended to the end of this
string when running the command.

	new_ext (string - Required) – The extension that the mutated filename should have (e.g.
js).










Warning

The specified mutator command must be installed, must be
executable by the Pyramid process, and must output the
mutated data to stdout. The last point can get tricky
depending on the command, so be sure to check its command
switches for the appropriate option.



For example, a mutator that would run .coffee files through the
coffee command (compiling them into JavaScript) would look like:

config.assign_assetmutator('coffee', 'coffee -c -p', 'js')










	
includeme(config)

	Activate the package; typically called via
config.include('pyramid_assetmutator') instead of being invoked
directly.






	
class AssetMutator(request, rendering_val)

	
	
assetmutator_url(path, **kw)

	Returns a Pyramid static_url() [http://pyramid.readthedocs.org/en/latest/api/request.html#pyramid.request.Request.static_url] of the
mutated asset (and mutates the asset if needed).





	Parameters:	
	path (string - Required) – The Pyramid asset path to process.

	mutator (dict or string - Optional) – Allows you to override/specify a specific mutator to use
(e.g. coffee), or assign a brand new mutator
dictionary to be used (e.g. {'cmd': 'lessc', 'ext':
'css'})














	
assetmutator_path(path, **kw)

	Returns a Pyramid static_path() [http://pyramid.readthedocs.org/en/latest/api/request.html#pyramid.request.Request.static_path] of the
mutated asset (and mutates the asset if needed).





	Parameters:	
	path (string - Required) – The Pyramid asset path to process.

	mutator (dict or string - Optional) – Allows you to override/specify a specific mutator to use
(e.g. coffee), or assign a brand new mutator
dictionary to be used (e.g. {'cmd': 'lessc', 'ext':
'css'})














	
assetmutator_source(path, **kw)

	Returns the source data/contents of the mutated asset (and mutates the
asset if needed). This is useful when you want to output inline data
(e.g. for inline JavaScript blocks).





	Parameters:	
	path (string - Required) – The Pyramid asset path to process.

	mutator (dict or string - Optional) – Allows you to override/specify a specific mutator to use
(e.g. coffee), or assign a brand new mutator
dictionary to be used (e.g. {'cmd': 'lessc', 'ext':
'css'})










Note

Many template packages escape output by default. Consult your
template language’s syntax to output an unescaped string.








	
assetmutator_assetpath(path, **kw)

	Returns a Pyramid asset specification [http://pyramid.readthedocs.org/en/latest/glossary.html#term-asset-specification] such as
pkg:static/path/to/file.ext (and mutates the asset if needed).





	Parameters:	
	path (string - Required) – The Pyramid asset path to process.

	mutator (dict or string - Optional) – Allows you to override/specify a specific mutator to use
(e.g. coffee), or assign a brand new mutator
dictionary to be used (e.g. {'cmd': 'lessc', 'ext':
'css'})









This function could be used to nest pyramid_assetmutator calls. e.g.
assetmutator_path(assetmutator_assetpath('pkg:static/js/script.coffee'))
could compile a CoffeeScript file into JS, and then further minify the
JS file if your mutator configuration looked something like:

config.assign_assetmutator('coffee', 'coffee -c -p', 'js')
config.assign_assetmutator('js', 'uglifyjs', 'js')

















          

      

      

    


    
         Copyright 2017, Seth Davis <seth@curiasolutions.com>.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	pyramid_assetmutator 1.0b1 documentation 
 
      

    


    
      
          
            

   Python Module Index


   
   p
   


   
     			

     		
       p	

     
       	
       	
       pyramid_assetmutator	
       

   



          

      

      

    


    
         Copyright 2017, Seth Davis <seth@curiasolutions.com>.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	pyramid_assetmutator 1.0b1 documentation 
 
      

    


    
      
          
            

Index



 A
 | I
 | P
 


A


  	
      
  	AssetMutator (class in pyramid_assetmutator)
  


      
  	assetmutator_assetpath() (AssetMutator method)
  


      
  	assetmutator_path() (AssetMutator method)
  


  

  	
      
  	assetmutator_source() (AssetMutator method)
  


      
  	assetmutator_url() (AssetMutator method)
  


      
  	assign_assetmutator() (in module pyramid_assetmutator)
  


  





I


  	
      
  	includeme() (in module pyramid_assetmutator)
  


  





P


  	
      
  	pyramid_assetmutator (module)
  


  







          

      

      

    


    
         Copyright 2017, Seth Davis <seth@curiasolutions.com>.
      Created using Sphinx 1.3.5.
    

  search.html


    
      Navigation


      
        		
          index


        		
          modules |


        		pyramid_assetmutator 1.0b1 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2017, Seth Davis <seth@curiasolutions.com>.
      Created using Sphinx 1.3.5.
    

  

_static/file.png





_static/down-pressed.png





_static/ajax-loader.gif





_static/up-pressed.png





_static/plus.png





_static/comment-bright.png





_static/comment.png





_static/down.png





_static/up.png





_static/minus.png





_static/comment-close.png





