
pyramid_assetmutator Documentation
Release 1.0b1

Seth Davis

February 22, 2017

Contents

1 Overview 1

2 Installation 3

3 Setup 5

4 Usage 7

5 Mutators 11

6 Settings 13

7 Asset Concatenation (a.k.a Asset Pipeline) 15

8 More Information 17

9 Development Versions / Reporting Issues 19

10 Indices and tables 21

Python Module Index 23

i

ii

CHAPTER 1

Overview

pyramid_assetmutator provides simple and flexible asset mutation (also known as compiling or piping) for
your Pyramid applications.

Its goal is to provide Pyramid developers with a basic and straightforward mechanism for utilizing asset compilation
(e.g. for CoffeeScript/Sass), minification (e.g. with jsmin), and optimization (e.g. with pngcrush).

As of version 0.3, it also adds experimental support for template language parsing (e.g. you could use Pyramid helpers
like request.route_url() within your CoffeeScript files by using application.coffee.pt as the asset
source filename).

Warning: This package only supports Pyramid 1.3 or later.

1

http://www.pylonsproject.org/

pyramid_assetmutator Documentation, Release 1.0b1

2 Chapter 1. Overview

CHAPTER 2

Installation

To install, simply:

pip install pyramid_assetmutator

• You’ll need to have Python 2.6+ and pip installed.

3

http://www.python.org
http://www.pip-installer.org

pyramid_assetmutator Documentation, Release 1.0b1

4 Chapter 2. Installation

CHAPTER 3

Setup

Once pyramid_assetmutator is installed, you must include it in your Pyramid project’s configuration. This is
typically done using Pyramid’s config.include mechanism in your project’s __init__.py:

config = Configurator(...)
config.include('pyramid_assetmutator')

Next, you must assign one or more mutators via the newly injected assign_assetmutator() configuration
method, so that your application can know what kind of assets you’ll be asking it to mutate. The configuration syntax
for your Pyramid project’s __init__.py is:

config.assign_assetmutator('SOURCE EXTENSION', 'COMMAND', 'OUTPUT EXTENSION')

For example, the following configuration would activate pyramid_assetmutator in your app, and initialize
mutators for CoffeeScript and Less files (allowing them to be compiled into the appropriate JavaScript and CSS):

config = Configurator(...)
config.include('pyramid_assetmutator')
config.assign_assetmutator('coffee', 'coffee -c -p', 'js')
config.assign_assetmutator('less', 'lessc', 'css')

5

http://pyramid.readthedocs.org/en/latest/api/config.html#pyramid.config.Configurator.include

pyramid_assetmutator Documentation, Release 1.0b1

6 Chapter 3. Setup

CHAPTER 4

Usage

Once you have included the module and configured your mutators, you will then be able to call one of the following
view helper methods in your templates to reference (with Pyramid’s asset specification syntax) and “mutate” (if
needed) an asset:

class AssetMutator(request, rendering_val)

assetmutator_url(path, **kw)
Returns a Pyramid static_url() of the mutated asset (and mutates the asset if needed).

Parameters

• path (string - Required) – The Pyramid asset path to process.

• mutator (dict or string - Optional) – Allows you to override/specify a spe-
cific mutator to use (e.g. coffee), or assign a brand new mutator dictionary to be used
(e.g. {’cmd’: ’lessc’, ’ext’: ’css’})

assetmutator_path(path, **kw)
Returns a Pyramid static_path() of the mutated asset (and mutates the asset if needed).

Parameters

• path (string - Required) – The Pyramid asset path to process.

• mutator (dict or string - Optional) – Allows you to override/specify a spe-
cific mutator to use (e.g. coffee), or assign a brand new mutator dictionary to be used
(e.g. {’cmd’: ’lessc’, ’ext’: ’css’})

assetmutator_source(path, **kw)
Returns the source data/contents of the mutated asset (and mutates the asset if needed). This is useful when
you want to output inline data (e.g. for inline JavaScript blocks).

Parameters

• path (string - Required) – The Pyramid asset path to process.

• mutator (dict or string - Optional) – Allows you to override/specify a spe-
cific mutator to use (e.g. coffee), or assign a brand new mutator dictionary to be used
(e.g. {’cmd’: ’lessc’, ’ext’: ’css’})

Note: Many template packages escape output by default. Consult your template language’s syntax to
output an unescaped string.

7

http://pyramid.readthedocs.org/en/stable/glossary.html#term-asset-specification
http://pyramid.readthedocs.org/en/latest/api/request.html#pyramid.request.Request.static_url
http://pyramid.readthedocs.org/en/latest/api/request.html#pyramid.request.Request.static_path

pyramid_assetmutator Documentation, Release 1.0b1

assetmutator_assetpath(path, **kw)
Returns a Pyramid asset specification such as pkg:static/path/to/file.ext (and mutates the
asset if needed).

Parameters

• path (string - Required) – The Pyramid asset path to process.

• mutator (dict or string - Optional) – Allows you to override/specify a spe-
cific mutator to use (e.g. coffee), or assign a brand new mutator dictionary to be used
(e.g. {’cmd’: ’lessc’, ’ext’: ’css’})

This function could be used to nest pyramid_assetmutator calls. e.g.
assetmutator_path(assetmutator_assetpath(’pkg:static/js/script.coffee’))
could compile a CoffeeScript file into JS, and then further minify the JS file if your mutator configuration
looked something like:

config.assign_assetmutator('coffee', 'coffee -c -p', 'js')
config.assign_assetmutator('js', 'uglifyjs', 'js')

Template Language Parsing

In version 0.3, experimental support for template language parsing was added. As long as the template language is
known to Pyramid (e.g. one of these bindings has been configured), you can append the expected template filename
extension to your asset filename and it will attempt to parse it before mutation.

For example, if the pyramid_jinja2 package was configured, you could specify an asset path to an asset named
application.coffee.jinja2 and pyramid_assetmutator would run it through the Jinja2 renderer be-
fore mutation.

Warning: Current support is experimental, and there are a few caveats:
1. You must specify a mutated_path in your configuration so that the intermediate-step sources can be

stored and parsed from that directory.
2. Template parsing is currently only supported when using the each_request configuration (which is the

default configuration).
3. If Pyramid’s “reload_templates” setting is false, templates will _NOT_ be reprocessed.
4. Hopefully obvious, but if the asset you are parsing uses a syntax that conflicts with the template language’s

syntax, things probably won’t work out very well for you.

Examples

An example using the Chameleon template language (and assuming that a mutator has been assigned for “coffee”
files):

<script src="${assetmutator_url('pkg:static/js/test.coffee')}"
type="text/javascript"></script>

And now the same example, but for inline code output:

<script type="text/javascript">
${structure: assetmutator_source('pkg:static/js/test.coffee')}
</script>

Or, if your default JS mutator configuration uses jsmin, but you wanted to use uglifyjs for a particular asset:

8 Chapter 4. Usage

http://pyramid.readthedocs.org/en/latest/glossary.html#term-asset-specification
https://pyramid.readthedocs.org/en/stable/narr/templates.html#available-add-on-template-system-bindings
http://chameleon.repoze.org/

pyramid_assetmutator Documentation, Release 1.0b1

<script src="${assetmutator_url('pkg:static/js/test.js', mutator={'cmd': 'uglifyjs', 'ext': 'js'})}"
type="text/javascript"></script>

As of version 0.3, your asset source could be parsed with Chameleon as well:

<script src="${assetmutator_url('pkg:static/js/test.coffee.pt')}"
type="text/javascript"></script>

Lastly, assetmutator_assetpath() is a particularly nifty/dirty method which gives you the ability to chain
mutators. For example, if you wanted to mutate a CoffeeScript file into a JavaScript file and then minify the JavaScript
file, you could do something like:

<script src="${assetmutator_url(assetmutator_assetpath('pkg:static/js/test.coffee'))}"
type="text/javascript"></script>

4.2. Examples 9

pyramid_assetmutator Documentation, Release 1.0b1

10 Chapter 4. Usage

CHAPTER 5

Mutators

You can assign as many mutators as you like using the config.assign_assetmutator method, but it is impor-
tant to keep in mind the following:

• The mutator COMMAND must be installed, must be executable by the Pyramid process, and by default must
output the mutated data to stdout. The last point can be tricky depending on the command, so be sure to check
its command switches for the appropriate option (or create a wrapper as seen below).

• Mutators are executed in order (first in, first out), which means that it is possible to compile a CoffeeScript file
into a JavaScript file and then minify the JavaScript file; but for certain configurations this may only work if you
have assigned the CoffeeScript compiler before the JavaScript minifier.

Here are a few mutator commands that have been tested and are known to work as of this writing:

CoffeeScript - http://coffeescript.org/
config.assign_assetmutator('coffee', 'coffee -c -p', 'js')

Dart - http://www.dartlang.org/
Requires a wrapper - http://gist.github.com/98aa5e3f3d183d908caa
config.assign_assetmutator('dart', 'dart_wrapper', 'js')

TypeScript - http://www.typescriptlang.org/
Requires a wrapper - http://gist.github.com/eaace8a89881c8ca9cda
config.assign_assetmutator('ts', 'tsc_wrapper', 'js')

Less - http://lesscss.org/
config.assign_assetmutator('less', 'lessc', 'css')

Sass/SCSS - http://sass-lang.com/
config.assign_assetmutator('sass', 'sass', 'css')
config.assign_assetmutator('scss', 'sass --scss', 'css')

jsmin - http://www.crockford.com/javascript/jsmin.html
config.assign_assetmutator('js', 'jsmin', 'js')

UglifyJS - http://github.com/mishoo/UglifyJS
config.assign_assetmutator('js', 'uglifyjs', 'js')

pngcrush - http://pmt.sourceforge.net/pngcrush/
Requires a wrapper - http://gist.github.com/3a0c72ef9bb217315347
config.assign_assetmutator('png', 'pngcrush_wrapper', 'png')

11

pyramid_assetmutator Documentation, Release 1.0b1

12 Chapter 5. Mutators

CHAPTER 6

Settings

While the default settings will probably be fine for most people, custom settings can be configured via your Pyramid
application’s .ini file (in the app section representing your Pyramid app) using the assetmutator key:

assetmutator.remutate_check

Default stat

Options exists | stat | checksum

Defines what type of method to use for checking if an asset source has been updated (and should
therefore be remutated). If set to exists (fastest, but not always ideal), then it will only check to
see if a file matching the mutated version of the asset already exists. If set to stat, then the size
and last modified time will be checked. If set to checksum (slowest, but most reliable), then the
file contents will also be checked.

assetmutator.each_request

Default true

Whether or not assets should be checked/mutated during each request (whenever one of the
assetmutator_* methods is encountered).

assetmutator.each_boot

Default []

Defines a list of asset specifications that should be checked/mutated when the application boots (uses
Pyramid’s ApplicationCreated event).

Limited “globbing” support is available (via the glob module), although checks are not recursive
so you must be explicit.

e.g.:

assetmutator.each_boot =
myapp:static/js/application.coffee
myapp:static/css/*.sass
myapp:static/css/admin/*.sass

assetmutator.mutated_file_prefix

Default _

A prefix to add to the mutated asset’s output filename.

assetmutator.mutated_path

Default None

13

http://pyramid.readthedocs.org/en/stable/glossary.html#term-asset-specification
http://pyramid.readthedocs.org/en/latest/api/events.html#pyramid.events.ApplicationCreated
https://docs.python.org/3/library/glob.html#module-glob

pyramid_assetmutator Documentation, Release 1.0b1

By default, mutated output files are stored in the same directory as their source files. If you would
like to keep all mutated files in a specific directory, you can define a Pyramid asset specification here
(e.g. pkg:static/cache/).

Note: The specified path must be a valid asset specification that matches a configured static view,
and must be writable by the application.

assetmutator.purge_mutated_path

Default false

When true, if a valid mutated_path is specified then any files within it will be deleted when
the application boots (uses Pyramid’s ApplicationCreated event).

assetmutator.always_remutate

Default []

Defines a list of asset specifications that should always be remutated — even if the mutated version
of the asset is already present.

Limited “globbing” support is available (via the fnmatch module), so a value of *.sass would
match all Sass sources, while a star value (*) would specify that all sources should always be remu-
tated.

e.g.:

assetmutator.always_remutate =

*.sass
myapp:static/js/application.coffee

Note: Combining this with the each_request setting can be useful in development environ-
ments when your source files contain imports and therefore may not always change but should still
be remutated so that import changes are processed. However, this can significantly affect perfor-
mance so it should only be utilized in environments that require it. Alternatively, you may use a
remutate_check value of stat (the default) or checksum and manually “touch” a source file
to trigger a remutate on the next request.

Production Example

As an example, if you wanted to only check/mutate assets on each boot (a good practice for production environments),
processing CoffeeScript and Sass files in the js and css root and admin directories, with each mutated _filename
stored in a myapp:static/cache/ directory, your .ini file would look something like:

[app:main]
...other settings...
assetmutator.each_request = false
assetmutator.each_boot =

myapp:static/js/*.coffee
myapp:static/js/admin/*.coffee
myapp:static/css/*.sass
myapp:static/css/admin/*.sass

assetmutator.mutated_path = myapp:static/cache/

14 Chapter 6. Settings

http://pyramid.readthedocs.org/en/stable/glossary.html#term-asset-specification
http://docs.pylonsproject.org/projects/pyramid/en/stable/narr/assets.html
http://pyramid.readthedocs.org/en/latest/api/events.html#pyramid.events.ApplicationCreated
http://pyramid.readthedocs.org/en/stable/glossary.html#term-asset-specification
https://docs.python.org/3/library/fnmatch.html#module-fnmatch

CHAPTER 7

Asset Concatenation (a.k.a Asset Pipeline)

A feature that is popular in some web frameworks (e.g. Ruby on Rails) is the ability to combine all assets that share a
common type into a single file for sourcing within your templates. However, this functionality is currently beyond the
scope of pyramid_assetmutator as we consider it to have less and less relevance in an HTTP/2 era.

15

pyramid_assetmutator Documentation, Release 1.0b1

16 Chapter 7. Asset Concatenation (a.k.a Asset Pipeline)

CHAPTER 8

More Information

pyramid_assetmutator API

assign_assetmutator(config, ext, cmd, new_ext)
Configuration method to set up/assign an asset mutator. This allows the various assetmutator_* view
helper methods to know which mutator to run for a specified asset path.

Parameters

• ext (string - Required) – The file extension this mutator should match (e.g. cof-
fee).

• cmd (string - Required) – The command to run (e.g. coffee -c -p). The filename
to be mutated will automatically be appended to the end of this string when running the
command.

• new_ext (string - Required) – The extension that the mutated filename should
have (e.g. js).

Warning: The specified mutator command must be installed, must be executable by the Pyramid process,
and must output the mutated data to stdout. The last point can get tricky depending on the command, so be
sure to check its command switches for the appropriate option.

For example, a mutator that would run .coffee files through the coffee command (compiling them into
JavaScript) would look like:

config.assign_assetmutator('coffee', 'coffee -c -p', 'js')

includeme(config)
Activate the package; typically called via config.include(’pyramid_assetmutator’) instead of
being invoked directly.

class AssetMutator(request, rendering_val)

assetmutator_url(path, **kw)
Returns a Pyramid static_url() of the mutated asset (and mutates the asset if needed).

Parameters

• path (string - Required) – The Pyramid asset path to process.

17

http://pyramid.readthedocs.org/en/latest/api/request.html#pyramid.request.Request.static_url

pyramid_assetmutator Documentation, Release 1.0b1

• mutator (dict or string - Optional) – Allows you to override/specify a spe-
cific mutator to use (e.g. coffee), or assign a brand new mutator dictionary to be used
(e.g. {’cmd’: ’lessc’, ’ext’: ’css’})

assetmutator_path(path, **kw)
Returns a Pyramid static_path() of the mutated asset (and mutates the asset if needed).

Parameters

• path (string - Required) – The Pyramid asset path to process.

• mutator (dict or string - Optional) – Allows you to override/specify a spe-
cific mutator to use (e.g. coffee), or assign a brand new mutator dictionary to be used
(e.g. {’cmd’: ’lessc’, ’ext’: ’css’})

assetmutator_source(path, **kw)
Returns the source data/contents of the mutated asset (and mutates the asset if needed). This is useful when
you want to output inline data (e.g. for inline JavaScript blocks).

Parameters

• path (string - Required) – The Pyramid asset path to process.

• mutator (dict or string - Optional) – Allows you to override/specify a spe-
cific mutator to use (e.g. coffee), or assign a brand new mutator dictionary to be used
(e.g. {’cmd’: ’lessc’, ’ext’: ’css’})

Note: Many template packages escape output by default. Consult your template language’s syntax to
output an unescaped string.

assetmutator_assetpath(path, **kw)
Returns a Pyramid asset specification such as pkg:static/path/to/file.ext (and mutates the
asset if needed).

Parameters

• path (string - Required) – The Pyramid asset path to process.

• mutator (dict or string - Optional) – Allows you to override/specify a spe-
cific mutator to use (e.g. coffee), or assign a brand new mutator dictionary to be used
(e.g. {’cmd’: ’lessc’, ’ext’: ’css’})

This function could be used to nest pyramid_assetmutator calls. e.g.
assetmutator_path(assetmutator_assetpath(’pkg:static/js/script.coffee’))
could compile a CoffeeScript file into JS, and then further minify the JS file if your mutator configuration
looked something like:

config.assign_assetmutator('coffee', 'coffee -c -p', 'js')
config.assign_assetmutator('js', 'uglifyjs', 'js')

18 Chapter 8. More Information

http://pyramid.readthedocs.org/en/latest/api/request.html#pyramid.request.Request.static_path
http://pyramid.readthedocs.org/en/latest/glossary.html#term-asset-specification

CHAPTER 9

Development Versions / Reporting Issues

Visit http://github.com/seedifferently/pyramid_assetmutator to download development or tagged versions.

Visit http://github.com/seedifferently/pyramid_assetmutator/issues to report issues.

19

http://github.com/seedifferently/pyramid_assetmutator
http://github.com/seedifferently/pyramid_assetmutator/issues

pyramid_assetmutator Documentation, Release 1.0b1

20 Chapter 9. Development Versions / Reporting Issues

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

21

pyramid_assetmutator Documentation, Release 1.0b1

22 Chapter 10. Indices and tables

Python Module Index

p
pyramid_assetmutator, 17

23

pyramid_assetmutator Documentation, Release 1.0b1

24 Python Module Index

Index

A
AssetMutator (class in pyramid_assetmutator), 17
assetmutator_assetpath() (AssetMutator method), 18
assetmutator_path() (AssetMutator method), 18
assetmutator_source() (AssetMutator method), 18
assetmutator_url() (AssetMutator method), 17
assign_assetmutator() (in module pyramid_assetmutator),

17

I
includeme() (in module pyramid_assetmutator), 17

P
pyramid_assetmutator (module), 17

25

	Overview
	Installation
	Setup
	Usage
	Mutators
	Settings
	Asset Concatenation (a.k.a Asset Pipeline)
	More Information
	Development Versions / Reporting Issues
	Indices and tables
	Python Module Index

